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Abstract
A moving boundary problem modelling a diffusion-limited reaction in the
presence of a nonlinear diffusivity is studied in this paper. The equations
are solved by means of a front-tracking method with proper regularizing
techniques. Reliable results are obtained in the case of both attractive and
repulsive interactions between the diffusing species. We investigate the effects
of the two kinds of interaction and their relevant strength on the width of
concentration profiles into the unreacted zone and the value of the unknown
at the moving interface.

The results are discussed in connection with Monte Carlo simulations of
on-lattice models and with some experimental observations.

PACS numbers: 02.60.Lj, 02.70.Bf, 61.43.Hv, 68.35.Fx, 82.40.Ck

1. Introduction

Moving boundaries have received great attention in many fields of research. In particular,
we point to some studies concerning applied mathematics and the theory of estimates in
heat and mass transfer operations [1–4] as well as in interface dynamics of pattern forming
systems [5–7]. Among them, viscous fingering in fluid mechanics and dendritic growth
equations in condensed matter physics have long been objects of intense investigation;
moreover, phenomena in other interdisciplinary fields such as dielectric breakdown fronts
in gases [8, 9] have many elements in common with the aforementioned studies.

Interesting questions appear when a generation term overlaps with a pure diffusion
[10–14]. This is true not only in the context of pure physics, but also for the applied lit-
erature [15–18]. Various discrete models have been proposed to investigate reaction–diffusion
4 Corresponding author.
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processes with Monte Carlo simulations [19–22]; the patterns often show anomalous geome-
tries and scaling laws in interface dynamics. In this case, continuum models are generally
expressed in the following form:

∂u

∂t
= D∇2u + F(u, t) (1)

where u is a set of dependent variables, D is a matrix of diffusivities and F is a vector related to
chemical reaction kinetics. Several attempts have been made to find solutions of equation (1)
for some classes of F functions in one spatial dimension. Particular attention has been given
to the asymptotic behaviour of front speed [23,24]. Localization or de-localization of reaction
fronts may occur according to the specific rules governing the contact between the initially
separated interacting species; the direction of the front motion is controlled by a parameter
depending on the initial particle densities and on the relevant diffusivities [25]. In particular,
the long-time behaviour of the front width w at criticality follows the power law w ∼ tβ with
β = 1/6 in the case of a characteristic binary reaction with second-order kinetics [26].

In this work, we consider a reaction–diffusion process in a diffusion-limited regime with
a concentration-dependent diffusion coefficient D(u). This choice is somewhat different from
equation (1). We are also interested in the short- and long-time behaviour of the unknown
u(x, t).

The solution of the so-called ‘full time-dependent free boundary problems’ [27] is based
on several techniques trying to give reliable results even in critical situations derived from sharp
boundaries and anisotropies [28]. The phase-field approach relies upon a modelling of moving
interfaces with a continuum approximation; it is supposed that the transition from one phase to
another gradually occurs in a space of finite width δ, where a field parameter varies smoothly
between the limiting values, constant in each phase. This approach, like the front-fixing [29]
and spectral techniques [30], does not show the unphysical numerical oscillations typical of
the front-tracking methods. In the latter techniques, the interface position s(t) and the value
of the unknown u[s(t)] at the moving interface are updated at every time step; the problem is
intrinsically nonlinear despite the linearity of the diffusion equation [31].

Several variants of the front-tracking methods exist; fixed and adaptive grid mesh
techniques and the method of lines are most commonly used in the literature. In the method of
lines, the moving boundary problem is solved transforming the PDEs contained in the model
into a set of ODEs, which are solved at discrete times or at discrete space points [32]; moreover
these techniques, like the front-fixing methods, often require some variable transformations
that may add further algebraic complication to a problem that can be, even originally, tricky.

Here, we use a front-tracking method that, though traditional in its essence, is implemented
with some useful regularizing criteria, eliminating the drawbacks outlined above.

The paper is organized as follows. In section 2, we describe the model and give some details
of the numerical recipe adopted to regularize the solution; in section 3 we present the results
with a particular attention to the correlation between this approach, the discrete models dealing
with diffusion fronts in case of particle interactions and some experimental observations. In
section 4, we investigate a perturbative solution of the problem with concentration-dependent
diffusivity and we relate the analytical results to those derived from the numerical approach.
In section 5 we draw the conclusions and trace the direction for future work.

2. Model and algorithm

We shall consider here a moving boundary problem of the following kind:
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∂u

∂t
= ∂

∂x

[
D(u)

∂u

∂x

]
(2)

ds

dt
= f (u)

∂u

∂x

∣∣∣∣
x=s

(3)

where u is the unknown variable assuming a specific role according to the relevant physics
of the process. For instance, u can represent the mole fraction or adimensional temperature
in the case of mass or heat transport, respectively. In the examples that will be considered,
we shall refer only to mass transport and u will be treated as concentration in the following.
f (u) is a known function describing transport across the moving interface s(t); the position
of the interface is an unknown to be determined together with the profile of u in the semi-
infinite medium; x and t are space and time variables and D(u) is a nonlinear expression of
the diffusion coefficient depending on concentration.

Figure 1. Scheme of the semi-infinite medium described in the paper. The upper rectangle refers
to an initial situation of mixed components with uniform concentration of both the diffusing species
A and the inert component B; the lower one is a snapshot of the reaction in progress. The dotted
interface moves rightwards and the hatched area to the left of it indicates the region where A has
already been depleted.

The above system can model a reaction–diffusion process schematically illustrated in
figure 1. At t = 0, a one-dimensional space region (x > 0) is filled by two chemical species
A and B with a given concentration. Only A is subject to a chemical reaction with another
species C, which enters the medium at x = 0 and annihilates the component A according to
the scheme A + C = D. For instance, C might be a gaseous component diffusing by cation
vacancies into a solid phase A + B and forming a binary compound with A only, as supposed
in Wagner’s pioneering work [33].

The kinetic rate of the reaction is supposed to be infinite; therefore, only the diffusion
process of A in the zone not affected by the reaction governs the advancing of the front.

At t > 0, the picture of this reaction–diffusion process is characterized by

(a) a region {0 < x < s(t)} with B and D, where A has been chemically depleted and
(b) a region {x > s(t)} with A + B, where we have to determine the concentration profile of

the diffusing species and its value at the moving interface taking into account a specific
expression of the diffusivity D(u).

For the present simulations, we interpret u as the concentration of the component A whose
diffusivity is chosen as follows:

D(u) = D0 exp

(
α

u − ū0

ū1 − ū0

)
. (4)
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Figure 2. Scheme of the spatial discretization technique adopted in the method here outlined.

An exponential law in the expression of D(u) has been commonly adopted in the
literature [34]. D0 is a constant reference value; α is a parameter that modulates the attractive
or repulsive A–A particle interaction defined by

α > 0 → dD

du
> 0 → repulsive interaction

α < 0 → dD

du
< 0 → attractive interaction.

(5)

u0 and u1 are constants appearing in the boundary and initial conditions:

t = 0 u(x, 0) = ū1 x > 0

t, x = 0 u(0, 0) = ū0

x → ∞ ∂u

∂x
(x, t) = 0 t > 0.

(6)

Few analytical solutions of the system (2), (3) are known in closed form, and they concern
cases where D is constant for some given expression of f (u). These exact solutions are usually
presented as functions of the scaled variable ξ = x

t1/2 and are called similarity solutions.
The front-tracking method here adopted is based on a fixed-grid technique; the solution

ūi,j of the system (2), (3) at grid point i�x for time j�t is approximated by a sequence of
functions {un} with Lim

n→∞un
i,j = ūi,j . For points lying far from the moving interface, a standard

Crank–Nicolson code can be used to discretize equation (2) as follows:

1
2

(
uxx |i,j+1 + uxx |i,j

) = �

(
i�x, (j + 1

2 )�t, 1
2 (ui,j+1 + ui,j ),

1
2

(
ux |i,j+1 + ux |i,j

)
,

1

�t
(ui,j+1 − ui,j )

)
(7)

where � is a nonlinear operator depending on the lower-order derivatives by which the
Laplacian contained in (2) is expressed, that is

� = �

(
x, t, u,

∂u

∂x
,
∂u

∂t

)
. (8)

A typical scheme capturing the essential features of the method is discussed in [35], where it is
shown how to minimize the effect of a discontinuity in the concentration values at the starting
interface in a simple linear case. Moreover, we used another regularizing criterion that, due to
its basic role in the reliability of the method, is worth recalling briefly.

Given some �x value in the space grid mesh, the position of the moving interface will be
usually located between two neighbouring grid points i and i + 1 at any time j�t , say:

s(j�t) = (i + p)�x 0 < p < 1. (9)
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A grid crossing at point i + 1 occurs when (see figure 2)

s(j�t) < (i + 1)�x < s[(j + 1)�t]. (10)

This is a particularly critical situation as

Lim
s→(i+1)�x−

u(s) �= Lim
s→(i+1)�x+

u(s). (11)

The origin of the above discontinuity lies in the expression of the Lagrange interpolation
formulae [29] by which the spatial derivative present in (3) is discretized in the classical
method. Applying this formalism in the neighbourhood of the moving boundary and restricting
the expansion to n fixed grid points, one obtains

∂u

∂x

∣∣∣∣
x=s

= Q0(s, xi+1, . . . , xi+n)u(s) +
n∑

k=1

Qk(s, xi+1, . . . , xi+n)u(xi+k)

= �(s, xi+1, . . . , xi+n) (12)

where Qk are rational functions of polynomials having singularities when s → xi+k for at
least one k. This is the cause of the numerical oscillations previously described leading to
unphysical results and even divergence in some cases. The problem can be overcome by means
of a regularizing technique [36] based on proper weights cutting off the singularities, damping
the spurious oscillations and preserving the second-order accuracy in space and time required
by the Crank–Nicholson method. Many stable algebraic expressions alternative to (12) can be
chosen. When we use a forward expansion, that is for {xn > s, ∀n}, a suitable n-point code
for the marching interface can be written as

∂u

∂x

∣∣∣∣
x=s

= xi+1 − s

�x
�(s, xi+1, . . . , xi+n) +

s − xi

�x
�(s, xi+2, . . . , xi+n+1). (13)

For the present simulations, we used an expression for f (u) of the type

f (u) = D(u)

1 − u
; (14)

this corresponds to a Fickian mass transport law across the interface without any change in
bulk density. Such an expression has been adopted [34] in the case of concentration-dependent
or independent diffusivity.

3. Results and discussion

In figure 3, the time trend of the interface position s(t) is considered. Three scatter graphs
are reported in the case of repulsive, zero and attractive interactions. As expected, we find
no deviations from the classical ‘parabolic’ law of the moving front, that is s(t) = ktβ with
β = 0.5±0.05. We point out that, in all the simulations, we considered at most values of α that
produced variation of D(u) corresponding to a range of more than two orders of magnitude in
the global manifold x > s(t). The pre-exponential factor k is affected by the kind and extent
of interactions [37]; the effects induced on the front speed result in a faster motion in the case
of repulsive interaction. This phenomenon will be reconsidered later when we discuss some
interesting features of experimental data.

In figure 4, the concentration profiles for x > s(t) are plotted for fixed times in order to
compare the non-correlated case (α = 0) with the attractive one. For all the x values at which
both the profiles exist at time t̄ , that is for x > max{s(t̄ , α > 0); s(t̄ , α = 0)}, the concentration
values for the attractive interactions are greater than those pertaining to the non-correlated case,
namely

u(x, t̄, α < 0) > u(x, t̄, α = 0). (15)
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Figure 3. Double-logarithmic plot of the interface position s(t) versus time. Three scatter graphs
are reported for different values of the parameter α, which decreases from top to bottom. All values
are obtained with D0 = 10−4, ū1 = 0.5 and ū0 = 2.2 × 10−2.

Figure 4. Plot of concentration profiles of A as a function of x. Solid lines and open circles refer to
attractive interactions (α < 0), dashed curves and solid circles to null interaction (α = 0). Circle
abscissas indicate interface positions in all cases. D0, ū1 and ū0 are as in figure 3.

Despite this fact, it is interesting to note that the concentrationu[s(t, α)] at the moving interface
subject to attractive interactions is significantly lower than in the constant-diffusivity (non-
correlated) case; that is,

u[s(t̄ , α < 0)] < u[s(t̄ , α = 0)]. (16)
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Figure 5. Plot of concentration profiles of A as a function of x. Solid lines and open circles refer
to repulsive interactions (α > 0), dashed curves and solid circles to null interaction (α = 0). Circle
abscissas indicate interface positions in all cases. D0, ū1 and ū0 are as in figure 3.

Figure 5 represents a situation which is the opposite of what has been just described. Here,
in fact, the case D = const is compared with the diffusion trend generated by repulsive
correlations. Both inequalities (15) and (16) are inverted. In particular we focus our attention
on concentration values on the moving interface s(t, α). These values are reconsidered in
figure 6, with the only difference that, now, they are plotted as a function of time. The
trend for α = 0 is also added for the sake of completeness, in order to show the fairly good
approximation to the analytical solution that, for this particular case, is well known [33] and is
plotted as a dotted line. In the cases considered, for both attractive and repulsive interactions,
the concentration values on the moving interface converge to a constant value; the convergence
is very rapid for α > 0 but becomes considerably slower for α < 0. This trend can be observed
in the plot for α = −5, where we notice a transient deviation from the constant value at short
times. Besides, for all values of α that we used in the simulations, we can conclude that

∂{u[s(t, α)]}
∂α

> 0 with u[s(t, α)] ∈ {ū0, ū1}. (17)

This amounts to saying that, for strong repulsive interactions, the concentration value at the
moving interface monotonically approaches the value u1 of the unperturbed phase for x → ∞,
whilst for strong attractive interactions it approaches the starting initial value u0 corresponding
to a very low concentration of A.

The results presented here are independent of the space and time discretization parameters
�x and �t . Figure 7 reports the concentration profiles at fixed time for attractive (α = −1)
and repulsive interactions (α = 1) versus the space variable x. All plots for different values of
�x and �t collapse onto a single curve. Figure 8 reports the moving interface concentration
versus time for the same values of α. Again, it is shown how the curves overlap with one
another for different choices of �x and �t .

In the excellent lecture note of van Saarloos [31], it was remarked that neither the concept
nor the meaning of the word ‘interface’ is universally accepted. From this point on, to avoid
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Figure 6. Trend of the moving boundary (interface) concentration versus time for three different
values of the parameter α. Dotted lines represent, from top to bottom, the unperturbed value ū1 for
x → ∞, the constant analytical solution for α = 0 (taken from [33]) and the initial starting value
ū0, respectively.

Figure 7. Plot of the concentration profiles at fixed time t = 1 for attractive (α = −1; open
symbols) and repulsive (α = 1; solid symbols) interactions versus the space variable x. Triangles,
�x = 5 × 10−5; �t = 5 × 10−5; squares, �x = 10−4; �t = 10−4; circles, �x = 5 × 10−4;
�t = 5 × 10−4.

misunderstanding, we shall consider as ‘interface’ the physical separation located at s(t)

dividing two different phases and as ‘diffusion front’ the zone belonging to the unreacted phase
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Figure 8. Plot of the moving boundary concentration versus time for attractive (α = −1;
open symbols) and repulsive (α = 1; solid symbols) interactions. Triangles, �x = 5 × 10−5;
�t = 5 × 10−5; squares, �x = 10−4; �t = 10−4; circles, �x = 5 × 10−4; �t = 5 × 10−4.

with x > s(t) whose width σ and medium abscissa 〈x〉 are defined by the following relations:

〈x〉 =
∫ ū1

u[s(t,α)] x(u) du

ū1 − u[s(t, α)]
σ =

√∫ ū1

u[s(t,α)] (x − 〈x〉)2 du

ū1 − u[s(t, α)]
. (18)

The discrete approach to diffusion problems has been investigated in detail. Particles generated
on a fixed source invade a semi-infinite lattice of initially empty sites with a diffusion motion
depending on hard-core exclusion rules in two dimensions. In that framework, particle inter-
actions are modelled introducing various criteria such as nearest-neighbour jump-dependent
rates [38] or dipolar potential correlations [39]. The probability densities of occupied sites at
fronts generated in a gradient percolation are used to deduce exact values of the percolation
threshold pc. It has also been shown that pc increases or decreases for repulsive or attractive
interactions, respectively [38]. The same trend can be observed (figure 9) in the behaviour
of u(〈x〉, α). The results presented in figure 9 are consistent with the behaviour of front con-
centration values in a gradient percolation process with a moving absorbing wall at constant
concentration located at the interface s(t).

Besides, the geometries of fronts in discrete models show a sharp profile for very low α

down to the limit of the spinodal transition, whilst for large α > 0 characteristic chequer-board
patterns with overhangs and ravines appear when the diffusion front becomes larger up to the
limit of the order–disorder transition.

Figure 10 shows the influence of the interaction parameter α on the width of the diffusion
front σ . The curves are shifted to higher values of σ as α grows, in agreement with the results
of the aforementioned on-lattice simulations. Moreover, if we merge the results of figures 4, 5
and 10 with the statements (17), we can make further considerations: forα � 0, we haveσ ≈ 0
and we note the onset of a moving depletion layer, very poor in component A, into the unreacted
zone for x > s(t). This corresponds to the limit of the spinodal transition in discrete models.
In the opposite case, for α � 0, we observe a zone where ∇x ≈ 0 for |x − 〈x〉| < σ . The



1584 A P Reverberi et al

Figure 9. Plot of the concentration value at the diffusion front average position 〈x〉 versus the
interaction parameter α.

Figure 10. Plot of the width of the diffusion front σ versus time for three different choices of the
interaction parameter α.

diffusion front now has a very flat concentration profile; we expect that the limiting situation
at which its concentration remains nearly unchanged for all x belonging to the unreacted zone
corresponds to the onset of the order–disorder transition in discrete models.

These phenomena can be visually clarified by inspection of the three snapshots of figure 11,
where the concentration of A of the profiles of figures 4 and 5 is represented by different
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Figure 11. Snapshots of the three different situations studied in the paper: from top to bottom,
attractive (α = −5), null (α = 0) and repulsive interactions (α = 3.5) respectively. The values
of u are represented in different grey tones. All figures are drawn for the same elapsed time
t∗ = 2.1[s]. The squared area is the region where A has interacted; a depletion zone and a steep
profile concentration on the right of the moving interface are present for attractive interactions
(upper snapshot). In contrast, an almost uniform grey tone with no depletion layer can be seen for
repulsive interaction (lower snapshot).

grey tones that darken at higher concentration of the diffusing species (all pictures are drawn
for the same elapsed time). Note the enhancing factor of the repulsive interactions on the
interface speed: the interface position, namely, the threshold between the squared area and the
grey zone, is shifted more and more to the right for growing α.

The geometric properties of fronts in on-lattice diffusion processes are particularly
interesting with respect to the anomalous scaling properties connected with their fractal
behaviour. Whatever the criterion introduced to fix the connection between percolating
elements [40], a front is a zone that separates a connected network from isolated particles
or clusters. With the above considerations in mind, and observing that the advancing speed v

of the interface s(t) grows with α (see figures 3 and 11), we focus our attention on the joint
inequalities

∂σ

∂α
> 0 ∩ ∂v

∂α
> 0 (19)

where σ can assume the role of ‘width of the lattice decay zone’.
Experimentally, it was noted that the growth of layers of binary amorphous alloys is

more pronounced in the case of fast diffusion [41]. These situations occur by contact
of pure polycrystalline metal or alloys under isothermal conditions. Cases of solid-state
amorphization reactions (SSARs) were reported in the presence of repulsive interactions of
diffusing species [34].

A simple one-dimensional model cannot capture front anisotropies and local phenomena
that seem to have an important role in SSAR [42]. However, it is intriguing to note that, even
in the present study, the width of the lattice decay zone σ is greater for high values of v and α

that correspond, respectively, to fast diffusion and repulsive interactions.

4. A perturbative approach to the problem

We now propose a perturbative solution of equations (2) and (3) in order to motivate the
previously presented numerical results. Very few solutions of moving boundary problems
have been obtained by perturbation methods. As pointed out by Crank [29], the analysis is
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very complicated and often prohibitive beyond the zero-order approximation. With reference
to equations (2) and (3), let us write the dependent variables defining the problem as follows:

u = u0 + εu1 (20)

s = s0 + εs1. (21)

It is convenient to write the diffusion coefficient in the following form:

D = D0 + εf (22)

where f depends linearly on concentration, that is f = ku.
Inserting equation (20) into (2), we obtain

∂u0

∂t
+ ε

∂u1

∂t
= ε

∂f

∂u

((
∂u0

∂x

)2

+ 2ε
∂u0

∂x

∂u1

∂x
+ ε2

(
∂u1

∂x

)2
)

+ D0
∂2u0

∂x2

+ εD0
∂2u1

∂x2
+ εf

∂2u0

∂x2
+ ε2f

∂2u1

∂x2
. (23)

For the moving interface equation, analogously, we put (21) into (3) and write

ds0

dt
+ ε

ds1

dt
= D(ui)

1 − (u0i + εu1i)

(
∂u0

∂x

∣∣∣∣
i

+ ε
∂u1

∂x

∣∣∣∣
i

)
(24)

where the subscript i indicates the values calculated at the moving interface.
Linearizing the first factor appearing on the right-hand side of (24) and collecting the

terms according to the exponent of ε, we obtain

ds0

dt
+ ε

ds1

dt
∼= D0

1 − u0i

∂u0

∂x

∣∣∣∣
i

+ ε
ku0i

1 − u0i

∂u0

∂x

∣∣∣∣
i

− ε
D0u1i

(1 − u0i)2

∂u0

∂x

∣∣∣∣
i

+ε
D0

1 − u0i

∂u1

∂x

∣∣∣∣
i

+ ε2 · · · . (25)

The zero-order balance, derived from (23) and (25), is

∂u0

∂t
= D0

∂2u0

∂x2
(26)

ds0

dt
= D0

1 − u0i

∂u0

∂x

∣∣∣∣
i

. (27)

The system of equations (26) and (27) has an explicit solution [33] that reads

u0(x, t) = u0(0, 0) + [u0(∞, 0) − u0(0, 0)] erf

(
x

2
√
D0t

)
(28)

s0 = β
√
D0t (29)

where β is a constant pre-factor depending on the boundary conditions.
It is immediate to deduce that the concentration u0i at the moving interface has a constant

value u0i = u0i(β). This result is consistent with the numerical solution for null interactions
(α = 0 → D = D0) reported in figure 6.

It is more intriguing to consider the balance of first-order terms in (23) and (25), which
assumes the form

∂u1

∂t
= D0

∂2u1

∂x2
+ k

(
∂u0

∂x

)2

+ ku0
∂2u0

∂x2
= D0

∂u1

∂x2
+ g(x, t) (30)

ds1

dt
= D0

1 − u0i

∂u1

∂x

∣∣∣∣
i

− D0u1i

(1 − u1i)2

∂u0

∂x

∣∣∣∣
i

+
ku0i

1 − u0i

∂u0

∂x

∣∣∣∣
i

. (31)
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Let us focus our attention on equation (30), which is a linear equation whose inhomogeneous
term, g(x, t), is a known function deriving from the analytical solution of the zero-order
perturbative solution. Thus, omitting tedious but straightforward algebraic manipulations, one
can show that (30) has a solution u∗ depending on the variable λ = x/

√
t , namely

u∗
1 = a1 erf

(
λ

2
√
D0

)
+ a2 + Q(λ) (32)

where a1 and a2 are constant values related to the initial conditions, and Q(λ) is a particular
solution of the inhomogeneous differential equation.

The system of equations (30), (31) has a solution of the form s1 = γ
√
D0t , γ = constant.

From the above considerations, we can draw the following conclusions.

(1) From (32), u1i = constant, that is, the concentration value at the travelling interface
remains constant as in the zero-order case. This is again consistent with numerical
simulations (see figure 6).

(2) s = s0 +εs1 is a linear combination of functions linearly depending on
√
t . It follows that,

up to the investigated order, the time evolution of the interface scales with the same law as
the linear diffusion process. This result is in agreement with that shown in figure 3, where
the position of the interface is plotted versus time in the case of attractive and repulsive
interactions.

5. Conclusions

In this work we have presented a study of a diffusive process with moving front and nonlinear
diffusivity. The most interesting aspects can be resumed in the following points.

From a methodological point of view, the numerical approach, which takes advantage of
a regularization technique, is a further proof of the robustness of the method of Li [36] in
revamping the front-tracking algorithms solving moving boundary problems.

Moreover, the results have been compared with simulation data concerning discrete on-
lattice models. In particular, an analogy between the present results in the case of strong
attractive and repulsive interactions and the physics of phase transitions has been discussed.
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